Sustainable Synthesis of Porous Activated Carbon from Kalakai (Stenochlaena palustris) as Promising Electrode for Supercapacitor Applications

Authors

  • Primata Mardina Lambung Mangkurat University https://orcid.org/0000-0002-0434-5765
  • Iryanti Nata Lambung Mangkurat University
  • Rinna Juwita Lambung Mangkurat University
  • Chairul Irawan University of Lambung Mangkurat
  • Meilana Dharma Putra University of Lambung Mangkurat
  • Oktefani Kusuma Rawei Lambung Mangkurat University
  • Liza Lestari Lambung Mangkurat University

DOI:

https://doi.org/10.20527/bpi.v8i1.276

Keywords:

kalakai, nitric acid, activated carbon, electrode, supercapacitor

Abstract

Activated carbon derived from Kalakai (Stenochlaena palustris) was synthesized using nitric acid (HNO₃) as an activating agent at varying concentrations (0.5, 1, and 2 M) to investigate the potential of wetland plant-derived materials for supercapacitor electrodes. The synthesis involved a combined thermal and chemical activation process: first, chemical activation was carried out using a reflux system, followed by thermal activation at 600°C for 1 h under a nitrogen (N₂) atmosphere. The influence of HNO₃ concentration on the electrochemical performance of the resulting activated carbon was systematically evaluated. Electrochemical characterization revealed that the sample activated with 2 M HNO₃ (denoted as Ac-HNO₃/2) exhibited the most favorable supercapacitor performance, achieving a specific capacitance of 12.96 F g⁻¹ and an internal resistance (Rₑₜ) of 14.44 Ω. These findings demonstrate that Kalakai-derived activated carbon holds significant promise as an electrode material for energy storage applications. Keywords: kalakai, nitric acid, activated carbon, electrode, supercapacitor

References

Asadi Ghare Jeloo, Z., Ghasemzadeh, S., Hosseini-Monfared, H., Javanbakht, M., Naji, L., Najaflo, M., & Hamidi, S. (2024). From barley straw biomass to N/S co-doped as electrode material for high-performance supercapacitor applications. Materials Chemistry and Physics, 323(February), 129653. https://doi.org/10.1016/j.matchemphys.2024.129653

Demiral, İ., Samdan, C., & Demiral, H. (2021). Enrichment of the surface functional groups of activated carbon by modification method. Surfaces and Interfaces, 22(September 2020). https://doi.org/10.1016/j.surfin.2020.100873

Diao, S., Xie, Z., Wei, G., Xu, R., Wen, J., Tang, T., Jiang, L., Hu, G., Li, M., & Huang, H. (2024). Synthesis of rice husk derived porous carbon as low-cost and high-performance electrode material for supercapacitors. Diamond and Related Materials, 149(May), 111622. https://doi.org/10.1016/j.diamond.2024.111622

El-Hendawy, A. N. A. (2003). Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon, 41(4), 713–722. https://doi.org/10.1016/S0008-6223(03)00029-0

Farma, R., Anakis, R. P., & Apriyani, I. (2021). Activated Carbons (AC) prepared by direct CO2activation of parsea americana seeds biomass for supercapacitor electrodes. Journal of Physics: Conference Series, 2049(1). https://doi.org/10.1088/1742-6596/2049/1/012067

Farma, R., Julita, R. I., Apriyani, I., Awitdrus, A., & Taer, E. (2023). ZnCl2-assisted synthesis of coffee bean bagasse-based activated carbon as a stable material for high-performance supercapacitors. Mater. Today: Proc., 87, 25–31. https://doi.org/10.1016/j.matpr.2023.01.370

Gehrke, V., Maron, G. K., da Silva Rodrigues, L., Alano, J. H., de Pereira, C. M. P., Orlandi, M. O., & Carreño, N. L. V. (2021). Facile preparation of a novel biomass-derived H3PO4 and Mn(NO₃)₂ activated carbon from citrus bergamia peels for high-performance supercapacitors. Mater. Today Commun., 26. https://doi.org/10.1016/j.mtcomm.2020.101779

Gokce, Y., & Aktas, Z. (2014). Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Applied Surface Science, 313, 352–359. https://doi.org/10.1016/j.apsusc.2014.05.214

Gómez-Serrano, V., Acedo-Ramos, M., López-Peinado, A. J., & Valenzuela-Calahorrro, C. (1997). Mass and surface changes of activated carbon treated with nitric acid. Thermal behavior of the samples. Thermochimica Acta, 291(1–2), 109–115. https://doi.org/10.1016/s0040-6031(96)03098-5

Guo, Z., Han, X., Zhang, C., He, S., Liu, K., Hu, J., Yang, W., Jian, S., Jiang, S., & Duan, G. (2024). Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 35(7), 109007. https://doi.org/10.1016/j.cclet.2023.109007

Hamzah, Y., Taer, E., Apriwandi, A., Supian, F. L., Mozaffari, N., & Mozaffari, N. (2023). Cigarette filter butts-derived activated carbon with free binder electrode design for solid-state supercapacitor application. Commun. Sci. Technol., 8(2), 134–142.

https://doi.org/10.21924/cst.8.2.2023.1252

Jain, A., Ghosh, M., Krajewski, M., Kurungot, S., & Michalska, M. (2021). Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application. Journal of Energy Storage, 34(September 2020), 102178. https://doi.org/10.1016/j.est.2020.102178

Jangra, R., Mahendia, P., Karakoti, M., Sahoo, N. G., Srivastava, A., Sinha, O. P., Clemons, T. D., Deshpande, U., & Mahendia, S. (2024). ZnCl2-assisted conversion of nitrogen-containing biomass carbon from marigold flower: Toward highly porous activated nitrogen-doped carbon for low ESR and enhanced energy density supercapacitors. J. Energy Storage, 75 (August 2023), 109728. https://doi.org/10.1016/j.est.2023.109728

Jayachandran, M., Kishore Babu, S., Maiyalagan, T., Rajadurai, N., & Vijayakumar, T. (2021). Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications. Materials Letters, 301(June), 130335. https://doi.org/10.1016/j.matlet.2021.130335

Jazuli, A. B. (2015). Nitric Acid-Impregnated Activated Carbon from Palm Kernel Shell as Heterogeneous Catalyst for Biodiesel Production from Waste Cooking Oil. Dissertation. Universiti Teknologi PETRONAS, Malaysia

Kurniawan, W. B., Kurniawan, K., & Ipi. (2021). Fabrication of supercapacitor electrode based on pepper peel activated carbon. IOP Conference Series: Earth and Environmental Science, 926(1). https://doi.org/10.1088/1755-1315/926/1/012023

Li, X., Ding, Y., Zhang, H., He, T., Hao, J., Wu, J., Wu, Y., & Bai, H. (2024). Pine sawdust derived ultra-high specific surface area activated carbon: Towards high-performance hydrogen storage and supercapacitors. International Journal of Hydrogen Energy, 84(May), 623–633. https://doi.org/10.1016/j.ijhydene.2024.08.225

MAFTU’AH, E. (2015). Potensi berbagai bahan organik rawa sebagai sumber biochar. Pros Sem Nas Masy Biodiv Indon, 1(4), 776–781. https://doi.org/10.13057/psnmbi/m010417

Mahmud, N. A., Osman, N., & Jani, A. M. M. (2018). Characterization of Acid Treated Activated Carbon from Oil Palm Empty Fruit Bunches (EFB). Journal of Physics: Conference Series, 1083(1). https://doi.org/10.1088/1742-6596/1083/1/012049

Manimekala, T., Sivasubramanian, R., Dar, M. A., & Dharmalingam, G. (2025). Crafting the architecture of biomass-derived activated carbon via electrochemical insights for supercapacitors: a review. RSC Advances, 15(4), 2490–2522. https://doi.org/10.1039/d4ra07682f

Mukhiemer, S., Daraghmah, A., Nassar, H., Hussain, S., Lim, H., Han, H., Kim, T. W., Amireh, A. N., & Hilal, H. S. (2024). Coffee-Waste-Based ZnCl2 Activated Carbon in High-Performance Supercapacitor Electrodes: Impact of Graphitization, Surface Morphology, Porosity and Conductivity. Processes, 12(12). https://doi.org/10.3390/pr12122832

Qiu, B., Hu, W., Zhang, D., Wang, Y., & Chu, H. (2024). Biomass-derived carbon as a potential sustainable material for supercapacitor-based energy storage: Design, construction and application. Journal of Analytical and Applied Pyrolysis, 181(July), 106652. https://doi.org/10.1016/j.jaap.2024.106652

Samage, A., Halakarni, M., Yoon, H., & Sanna Kotrappanavar, N. (2024). Sustainable conversion of agricultural biomass waste into electrode materials with enhanced energy density for aqueous zinc-ion hybrid capacitors. Carbon, 219(December 2023), 118774. https://doi.org/10.1016/j.carbon.2023.118774

Selvaraj, M., Balamoorthy, E., & Manivasagam, T. G. (2023). Biomass derived nitrogen-doped activated carbon and novel biocompatible gel electrolytes for solid-state supercapacitor applications. Journal of Energy Storage, 72(PD), 108543. https://doi.org/10.1016/j.est.2023.108543

Singh, K., Kumar, R., & Kaur, A. (2023). Novel hierarchical porous carbon derived from biomass Citrus limetta pulp for high-performance quasi-solid-state supercapacitor electrodes. Journal of Energy Storage, 71(June), 108121. https://doi.org/10.1016/j.est.2023.108121

Stenny Winata, A., Devianto, H., & Frida Susanti, R. (2020). Synthesis of activated carbon from salacca peel with hydrothermal carbonization for supercapacitor application. Mater. Today: Proc., 44, 3268–3272. https://doi.org/10.1016/j.matpr.2020.11.515

Taer, E., Afdal Yusra, D., Amri, A., Awitdrus, Taslim, R., Apriwandi, Agustino, & Putri, A. (2020). The synthesis of activated carbon made from banana stem fibers as the supercapacitor electrodes. Mater. Today: Proc., 44, 3346–3349. https://doi.org/10.1016/j.matpr.2020.11.645

Tafete, G. A., Uysal, A., Habtu, N. G., Abera, M. K., Yemata, T. A., Duba, K. S., & Kinayyigit, S. (2024). Hydrothermally synthesized nitrogen-doped hydrochar from sawdust biomass for supercapacitor electrodes. International Journal of Electrochemical Science , 19(11), 100827. https://doi.org/10.1016/j.ijoes.2024.100827

Tekin, B., & Topcu, Y. (2024). Novel hemp biomass-derived activated carbon as cathode material for aqueous zinc-ion hybrid supercapacitors: Synthesis, characterization, and electrochemical performance. Journal of Energy Storage, 77(December 2023), 109879. https://doi.org/10.1016/j.est.2023.109879

Thirumal, V., Yuvakkumar, R., Ravi, G., Dineshkumar, G., Ganesan, M., Alotaibi, S. H., & Velauthapillai, D. (2022). Characterization of activated biomass carbon from tea leaf for supercapacitor applications. Chemosphere, 291(P2), 132931.

Downloads

Published

2025-06-20