Sustainable Synthesis of Porous Activated Carbon from Kalakai (Stenochlaena palustris) as Promising Electrode for Supercapacitor Applications
DOI:
https://doi.org/10.20527/bpi.v8i1.276Keywords:
kalakai, nitric acid, activated carbon, electrode, supercapacitorAbstract
Activated carbon derived from Kalakai (Stenochlaena palustris) was synthesized using nitric acid (HNO₃) as an activating agent at varying concentrations (0.5, 1, and 2 M) to investigate the potential of wetland plant-derived materials for supercapacitor electrodes. The synthesis involved a combined thermal and chemical activation process: first, chemical activation was carried out using a reflux system, followed by thermal activation at 600°C for 1 h under a nitrogen (N₂) atmosphere. The influence of HNO₃ concentration on the electrochemical performance of the resulting activated carbon was systematically evaluated. Electrochemical characterization revealed that the sample activated with 2 M HNO₃ (denoted as Ac-HNO₃/2) exhibited the most favorable supercapacitor performance, achieving a specific capacitance of 12.96 F g⁻¹ and an internal resistance (Rₑₜ) of 14.44 Ω. These findings demonstrate that Kalakai-derived activated carbon holds significant promise as an electrode material for energy storage applications. Keywords: kalakai, nitric acid, activated carbon, electrode, supercapacitorReferences
Asadi Ghare Jeloo, Z., Ghasemzadeh, S., Hosseini-Monfared, H., Javanbakht, M., Naji, L., Najaflo, M., & Hamidi, S. (2024). From barley straw biomass to N/S co-doped as electrode material for high-performance supercapacitor applications. Materials Chemistry and Physics, 323(February), 129653. https://doi.org/10.1016/j.matchemphys.2024.129653
Demiral, İ., Samdan, C., & Demiral, H. (2021). Enrichment of the surface functional groups of activated carbon by modification method. Surfaces and Interfaces, 22(September 2020). https://doi.org/10.1016/j.surfin.2020.100873
Diao, S., Xie, Z., Wei, G., Xu, R., Wen, J., Tang, T., Jiang, L., Hu, G., Li, M., & Huang, H. (2024). Synthesis of rice husk derived porous carbon as low-cost and high-performance electrode material for supercapacitors. Diamond and Related Materials, 149(May), 111622. https://doi.org/10.1016/j.diamond.2024.111622
El-Hendawy, A. N. A. (2003). Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon, 41(4), 713–722. https://doi.org/10.1016/S0008-6223(03)00029-0
Farma, R., Anakis, R. P., & Apriyani, I. (2021). Activated Carbons (AC) prepared by direct CO2activation of parsea americana seeds biomass for supercapacitor electrodes. Journal of Physics: Conference Series, 2049(1). https://doi.org/10.1088/1742-6596/2049/1/012067
Farma, R., Julita, R. I., Apriyani, I., Awitdrus, A., & Taer, E. (2023). ZnCl2-assisted synthesis of coffee bean bagasse-based activated carbon as a stable material for high-performance supercapacitors. Mater. Today: Proc., 87, 25–31. https://doi.org/10.1016/j.matpr.2023.01.370
Gehrke, V., Maron, G. K., da Silva Rodrigues, L., Alano, J. H., de Pereira, C. M. P., Orlandi, M. O., & Carreño, N. L. V. (2021). Facile preparation of a novel biomass-derived H3PO4 and Mn(NO₃)₂ activated carbon from citrus bergamia peels for high-performance supercapacitors. Mater. Today Commun., 26. https://doi.org/10.1016/j.mtcomm.2020.101779
Gokce, Y., & Aktas, Z. (2014). Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Applied Surface Science, 313, 352–359. https://doi.org/10.1016/j.apsusc.2014.05.214
Gómez-Serrano, V., Acedo-Ramos, M., López-Peinado, A. J., & Valenzuela-Calahorrro, C. (1997). Mass and surface changes of activated carbon treated with nitric acid. Thermal behavior of the samples. Thermochimica Acta, 291(1–2), 109–115. https://doi.org/10.1016/s0040-6031(96)03098-5
Guo, Z., Han, X., Zhang, C., He, S., Liu, K., Hu, J., Yang, W., Jian, S., Jiang, S., & Duan, G. (2024). Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 35(7), 109007. https://doi.org/10.1016/j.cclet.2023.109007
Hamzah, Y., Taer, E., Apriwandi, A., Supian, F. L., Mozaffari, N., & Mozaffari, N. (2023). Cigarette filter butts-derived activated carbon with free binder electrode design for solid-state supercapacitor application. Commun. Sci. Technol., 8(2), 134–142.
https://doi.org/10.21924/cst.8.2.2023.1252
Jain, A., Ghosh, M., Krajewski, M., Kurungot, S., & Michalska, M. (2021). Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application. Journal of Energy Storage, 34(September 2020), 102178. https://doi.org/10.1016/j.est.2020.102178
Jangra, R., Mahendia, P., Karakoti, M., Sahoo, N. G., Srivastava, A., Sinha, O. P., Clemons, T. D., Deshpande, U., & Mahendia, S. (2024). ZnCl2-assisted conversion of nitrogen-containing biomass carbon from marigold flower: Toward highly porous activated nitrogen-doped carbon for low ESR and enhanced energy density supercapacitors. J. Energy Storage, 75 (August 2023), 109728. https://doi.org/10.1016/j.est.2023.109728
Jayachandran, M., Kishore Babu, S., Maiyalagan, T., Rajadurai, N., & Vijayakumar, T. (2021). Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications. Materials Letters, 301(June), 130335. https://doi.org/10.1016/j.matlet.2021.130335
Jazuli, A. B. (2015). Nitric Acid-Impregnated Activated Carbon from Palm Kernel Shell as Heterogeneous Catalyst for Biodiesel Production from Waste Cooking Oil. Dissertation. Universiti Teknologi PETRONAS, Malaysia
Kurniawan, W. B., Kurniawan, K., & Ipi. (2021). Fabrication of supercapacitor electrode based on pepper peel activated carbon. IOP Conference Series: Earth and Environmental Science, 926(1). https://doi.org/10.1088/1755-1315/926/1/012023
Li, X., Ding, Y., Zhang, H., He, T., Hao, J., Wu, J., Wu, Y., & Bai, H. (2024). Pine sawdust derived ultra-high specific surface area activated carbon: Towards high-performance hydrogen storage and supercapacitors. International Journal of Hydrogen Energy, 84(May), 623–633. https://doi.org/10.1016/j.ijhydene.2024.08.225
MAFTU’AH, E. (2015). Potensi berbagai bahan organik rawa sebagai sumber biochar. Pros Sem Nas Masy Biodiv Indon, 1(4), 776–781. https://doi.org/10.13057/psnmbi/m010417
Mahmud, N. A., Osman, N., & Jani, A. M. M. (2018). Characterization of Acid Treated Activated Carbon from Oil Palm Empty Fruit Bunches (EFB). Journal of Physics: Conference Series, 1083(1). https://doi.org/10.1088/1742-6596/1083/1/012049
Manimekala, T., Sivasubramanian, R., Dar, M. A., & Dharmalingam, G. (2025). Crafting the architecture of biomass-derived activated carbon via electrochemical insights for supercapacitors: a review. RSC Advances, 15(4), 2490–2522. https://doi.org/10.1039/d4ra07682f
Mukhiemer, S., Daraghmah, A., Nassar, H., Hussain, S., Lim, H., Han, H., Kim, T. W., Amireh, A. N., & Hilal, H. S. (2024). Coffee-Waste-Based ZnCl2 Activated Carbon in High-Performance Supercapacitor Electrodes: Impact of Graphitization, Surface Morphology, Porosity and Conductivity. Processes, 12(12). https://doi.org/10.3390/pr12122832
Qiu, B., Hu, W., Zhang, D., Wang, Y., & Chu, H. (2024). Biomass-derived carbon as a potential sustainable material for supercapacitor-based energy storage: Design, construction and application. Journal of Analytical and Applied Pyrolysis, 181(July), 106652. https://doi.org/10.1016/j.jaap.2024.106652
Samage, A., Halakarni, M., Yoon, H., & Sanna Kotrappanavar, N. (2024). Sustainable conversion of agricultural biomass waste into electrode materials with enhanced energy density for aqueous zinc-ion hybrid capacitors. Carbon, 219(December 2023), 118774. https://doi.org/10.1016/j.carbon.2023.118774
Selvaraj, M., Balamoorthy, E., & Manivasagam, T. G. (2023). Biomass derived nitrogen-doped activated carbon and novel biocompatible gel electrolytes for solid-state supercapacitor applications. Journal of Energy Storage, 72(PD), 108543. https://doi.org/10.1016/j.est.2023.108543
Singh, K., Kumar, R., & Kaur, A. (2023). Novel hierarchical porous carbon derived from biomass Citrus limetta pulp for high-performance quasi-solid-state supercapacitor electrodes. Journal of Energy Storage, 71(June), 108121. https://doi.org/10.1016/j.est.2023.108121
Stenny Winata, A., Devianto, H., & Frida Susanti, R. (2020). Synthesis of activated carbon from salacca peel with hydrothermal carbonization for supercapacitor application. Mater. Today: Proc., 44, 3268–3272. https://doi.org/10.1016/j.matpr.2020.11.515
Taer, E., Afdal Yusra, D., Amri, A., Awitdrus, Taslim, R., Apriwandi, Agustino, & Putri, A. (2020). The synthesis of activated carbon made from banana stem fibers as the supercapacitor electrodes. Mater. Today: Proc., 44, 3346–3349. https://doi.org/10.1016/j.matpr.2020.11.645
Tafete, G. A., Uysal, A., Habtu, N. G., Abera, M. K., Yemata, T. A., Duba, K. S., & Kinayyigit, S. (2024). Hydrothermally synthesized nitrogen-doped hydrochar from sawdust biomass for supercapacitor electrodes. International Journal of Electrochemical Science , 19(11), 100827. https://doi.org/10.1016/j.ijoes.2024.100827
Tekin, B., & Topcu, Y. (2024). Novel hemp biomass-derived activated carbon as cathode material for aqueous zinc-ion hybrid supercapacitors: Synthesis, characterization, and electrochemical performance. Journal of Energy Storage, 77(December 2023), 109879. https://doi.org/10.1016/j.est.2023.109879
Thirumal, V., Yuvakkumar, R., Ravi, G., Dineshkumar, G., Ganesan, M., Alotaibi, S. H., & Velauthapillai, D. (2022). Characterization of activated biomass carbon from tea leaf for supercapacitor applications. Chemosphere, 291(P2), 132931.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Primata Mardina, Iryanti Nata, Rinna Juwita, Oktefani Kusuma Rawei, Liza Lestari

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.